Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 73, Number 3, February10 2020 , pages 239-257
DOI: https://doi.org/10.12989/sem.2020.73.3.239
 


Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages
A. Kanchanadevi and K. Ramanjaneyulu

 
Abstract
    In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.
 
Key Words
    beam-column sub-assemblage, steel bracket and haunch hybrid retrofit, energy dissipation, ductility, damage index, load-displacement hysteresis, strength degradation, post-earthquake retrofit
 
Address
1CSIR-Structural Engineering Research Centre, Chennai, Tamil Nadu, India
2Academy of Scientific and Innovative Research (AcSIR), India
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com