Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 69, Number 5, March10 2019 , pages 487-497
DOI: https://doi.org/10.12989/sem.2019.69.5.487
 


On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model
Behrouz Karami, Maziar Janghorban and Abdelouahed Tounsi

 
Abstract
    Rapid advances in the engineering applications can bring further areas to provide the opportunity to manipulate anisotropic structures for direct productivity in design of micro/nano-structures. For the first time, magnetic affected wave characteristics of nanosize plates made of anisotropic material is investigated via the three-dimensional bi-Helmholtz nonlocal strain gradient theory. Three small scale parameters are used to predict the size-dependent behavior of the nanoplates more accurately. After owing governing equations of wave motion, an analytical approach based harmonic series is utilized to fine the wave frequency as well as phase velocity. It is observed that the small scale parameters, magnetic field and wave number have considerable influence on the wave characteristics of anisotropic nanoplates. Due to the lack of any study on the mechanics of three-dimensional bi-Helmholtz gradient plates made of anisotropic materials, it is hoped that the present exact model may be used as a benchmark for future works of such nanostructures.
 
Key Words
    wave propagation; anisotropic materials; three dimensional elasticity theory; magnetic field
 
Address
Behrouz Karami and Maziar Janghorban: Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Abdelouahed Tounsi: Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com