Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Structural Engineering and Mechanics Volume 69, Number 3, February10 2019 , pages 243-255 DOI: https://doi.org/10.12989/sem.2019.69.3.243 |
|
|
Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement |
||
Mokhtar Ansari, Farhad Daneshjoo, Amir Safiey, Naser Safaeian Hamzehkolaei and Maryam Sorkhou
|
||
Abstract | ||
Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations. | ||
Key Words | ||
distributed plasticity; permanent displacements; displacement-based and force-based fiber element; integration point; material behavior model; reloading strain of concrete | ||
Address | ||
Mokhtar Ansari and Naser Safaeian Hamzehkolaei: Department of Civil Engineering, Bozorgmehr University of Qaenat, Qaen, Iran Farhad Daneshjoo: Department of Civil Engineering, Tarbiat Modares University, Tehran, Iran Amir Safiey: Glenn Department of Civil Engineering, Clemson University, Clemson, USA Maryam Sorkhou: Department of Civil Engineering, Gilan University, Rasht, Iran | ||