Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 65, Number 4, February25 2018 , pages 401-408
DOI: https://doi.org/10.12989/sem.2018.65.4.401
 


Improving the behavior of buckling restrained braces through obtaining optimum steel core length
Masoud Mirtaheri, Saeed Sehat and Meissam Nazeryan

 
Abstract
    Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.
 
Key Words
    buckling restrained braces; steel core; optimum length; seismic loads; failure
 
Address
Masoud Mirtaheri and Saeed Sehat: Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
eissam Nazeryan: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com