Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 61, Number 1, January10 2017, pages 49-63
DOI: http://dx.doi.org/10.12989/sem.2017.61.1.049
 


Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory
Tahar Hassaine Daouadji and Belkacem Adim

 
Abstract
    This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.
 
Key Words
    higher-order theories; shear deformation theory of sandwich plates; functionally graded material
 
Address
Tahar Hassaine Daouadji and Belkacem Adim: Département de Génie Civil, Université Ibn Khaldoun Tiaret, BP 78 Zaaroura, 14000 Tiaret, Algérie; Laboratoire de Géomatique et Développement Durable, Université Ibn Khaldoun de Tiaret, Algérie
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com