Techno Press
You logged in as. Techno Press

Structural Engineering and Mechanics
  Volume 39, Number 1, July10 2011 , pages 1-20
DOI: https://doi.org/10.12989/sem.2011.39.1.001
 


Applications of Hilbert-Huang transform to structural damage detection
Dung-Jiang Chiou, Wen-Ko Hsu, Cheng-Wu Chen, Chih-Min Hsieh, Jhy-Pyng Tang and Wei-Ling Chiang

 
Abstract
    This study investigates the feasibility of detecting structural damage using the HHT method. A damage detection index, the ratio of bandwidth (RB) is proposed. This index is highly correlated or approximately equal to the change of equivalent damping ratio for an intact structure incurring damage from strong ground motions. Based on an analysis of shaking table test data from benchmark models subjected to adjusted Kobe and El Centro earthquakes, the damage detection index is evaluated using the Hilbert-Huang Transform (HHT) and the Fast Fourier Transform (FFT) methods, respectively. Results indicate that, when the response of the structure is in the elastic region, the RB value only slightly changes in both the HHT and the FFT spectra. Additionally, RB values estimated from the HHT spectra vs. the PGA values change incrementally when the structure response is nonlinear i.e., member yielding occurs, but not in the RB curve from the FFT spectra. Moreover, the RB value of the top floor changes more than those from the other floors. Furthermore, structural damage is detected only when using the acceleration response data from the top floor. Therefore, the ratio of bandwidth RB estimated from the smoothed HHT spectra is an effective and sensitive damage index for detecting structural damage. Results of this study also demonstrate that the HHT is a powerful method in analyzing the nonlinear responses of steel structures to strong ground motions.
 
Key Words
    damage detection index; HHT; inter-story drift; half-power bandwidth
 
Address
Dung-Jiang Chiou, Wen-Ko Hsu: Department of Civil Engineering, National Central University Jhung-li, Taoyuan, Taiwan, R.O.C.
Cheng-Wu Chen: Institute of Maritime Information and Technology, National Kaohsiung Marine University,
Kaohsiung 80543, Taiwan, R.O.C.; Global Earth Observation and Data Analysis Center, National Cheng Kung University,
Tainan, Taiwan 701, R.O.C.
Chih-Min Hsieh: Institute of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung 80543, Taiwan, R.O.C.
Jhy-Pyng Tang and Wei-Ling Chiang: Department of Civil Engineering, National Central University Jhung-li, Taoyuan, Taiwan, R.O.C.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com