Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 29, Number 4, July10 2008 , pages 355-380

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction
Myung-Kwan Song and Yozo Fujino

    In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is
composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring
model. By Lagrange?s equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge
interaction, the complete system matrices of Maglev train-guideway structure system are composed.
Key Words
    magnetic levitation train; Maglev train-guideway interaction; guideway structures; dynamic analysis; finite element analysis.
Myung-Kwan Song: Renewable Energy Development Team, Corporate R&D Institute, Doosan Heavy Industries & Construction, 463-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
Yozo Fujino: Dept. of Civil Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2023 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: