Techno Press
You logged in as Techno Press

Structural Engineering and Mechanics
  Volume 20, Number 5, July30 2005, pages 505-526

Inter-story pounding between multistory reinforced concrete structures
Chris G. Karayannis and Maria J. Favvata

    The influence of the inter-story structural pounding on the seismic behaviour of adjacent multistory reinforced concrete structures with unequal total heights and different story heights is investigated. Although inter-story pounding is a common case in practice, it has not been studied before in the literature as far as the authors are aware. Fifty two pounding cases, each one for two different seismic excitations, are examined. From the results it can be deduced that: (i) The most important issue in the inter-story pounding is the local effect on the external column of the tall building that suffers the impact from the upper floor slab of the adjacent shorter structure. (ii) The ductility demands for this column are increased comparing with the ones without the pounding effect. In the cases that the two buildings are in contact these demands appear to be critical since they are higher than the available ductility values. In the cases that there is a small distance between the interacting buildings the ductility demands of this column are also higher than the ones of the same column without the pounding effect but they appear to be lower than the available ductility values. (iii) It has to be stressed that in all the examined cases the developed shear forces of this column exceeded the shear strength. Thus, it can be concluded that in inter-story pounding cases the column that suffers the impact is always in a critical condition due to shear action and, furthermore, in the cases that the two structures are in contact from the beginning this column appears to be critical due to high ductility demands as well. The consequences of the impact can be very severe for the integrity of the column and may be a primary cause for the initiation of the collapse of the structure. This means that special measures have to be taken in the design process first for the critically increased shear demands and secondly for the high ductility demands.
Key Words
    structural pounding; inter-story pounding; reinforced concrete structures; ductility requirements; non-linear dynamic analysis.
Department of Civil Engineering, Democritus University of Thrace, Xanthi, 67100, Greece

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: