Techno Press


Structural Engineering and Mechanics   Volume 17, Number 3, March 2004, pages 539-556
DOI: http://dx.doi.org/10.12989/sem.2004.17.3_4.539
 
Piezoelectric friction dampers for earthquake mitigation of buildings: design, fabrication, and characterization
Genda Chen, Gabriel T. Garrett, Chaoqiang Chen and Franklin Y. Cheng

 
Abstract     [Full Text]
    In this paper, the design, fabrication and characterization of a piezoelectric friction damper are presented. It was sized with the proposed practical procedure to minimize the story drift and floor acceleration of an existing 1/4-scale, three-story frame structure under both near-fault and far-field earthquakes. The design operation friction force in kip was numerically determined to range from 2.2 to 3.3 times the value of the peak ground acceleration in g (gravitational acceleration). Experimental results indicated that the load-displacement loop of the damper is nearly rectangular in shape and independent of the excitation frequency. The coefficient of friction of the damper is approximately 0.85 when the clamping force on the damper is above 400 lbs. It was found that the friction force variation of the damper generated by piezoelectric actuators with 1000 Volts is approximately 90% of the expected value. The properties of the damper are insensitive to its ambient temperature and remain almost the same after being tested for more than 12,000 cycles.
 
Key Words
    piezoelectric actuators; friction damper; semi-active control; adaptive clamping force; variable friction damper; durability; seismic performance.
 
Address
Department of Civil, Architectural, and Environmental Engineering, University of Missouri-Rolla, 328 Butler-Carlton Hall, 1870 Miner Circle, Rolla, MO 65409-0030, USA
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com