Techno Press
You logged in as. Techno Press

Steel and Composite Structures
  Volume 50, Number 2, January 25 2024 , pages 149-158
DOI: https://doi.org/10.12989/scs.2024.50.2.149
 


Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions
Jinpeng Song, Yujie He and Gui-Lin She

 
Abstract
    Considering that different boundary conditions can have an important impact on structural vibration characteristics. In this paper, the nonlinear forced vibration behavior of functionally graded material (FGM) doubly curved shells with initial geometric imperfections under different boundary conditions is studied. Considering initial geometric imperfections and von Karman geometric nonlinearity, the nonlinear governing equations of FGM doubly curved shells are derived using Reissner's first order shear deformation (FOSD) theory. Three different boundary conditions of four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS) were studied, and a system of nonlinear ordinary differential equations was obtained with the help of Galerkin principle. The nonlinear forced vibration response of the FGM doubly curved shell is obtained by using the modified Lindstedt Poincare (MLP) method. The accuracy of this method was verified by comparing it with published literature. Finally, the effects of curvature ratio, power law index, void coefficient, prestress, and initial geometric imperfections on the resonance of FGM doubly curved shells under different boundary conditions are fully discussed. The relevant research results can provide certain guidance for the design and application of doubly curved shell.
 
Key Words
    boundary conditions; FGM doubly curved shell; initial geometrical imperfection; nonlinear primary resonance
 
Address
Jinpeng Song, Yujie He and Gui-Lin She:College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com