Techno Press
You logged in as. Techno Press

Steel and Composite Structures
  Volume 48, Number 4, August25 2023 , pages 461-474
DOI: https://doi.org/10.12989/scs.2023.48.4.461
 

 open access

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect
Yu-A Kim, Ju-young Hwang and Jin-Kook Kim

 
Abstract
    Concrete-filled steel tubes are among the most efficient compressive structural members because the strength of the concrete is enhanced given that the surrounding steel tube confines the concrete laterally and the steel tube is restrained with regard to inward deformation due to the concrete existing inside. Accurate estimations of the ultimate compressive strength of CFT are important for efficient designs of CFT members. In this study, an analytical procedure that directly formulates the interaction between the concrete and steel tube by considering the nonlinear Poisson effect and stress-strain curve of the concrete including the confinement effect is proposed. The failure stress of concrete and von-Mises failure yield criterion of steel were used to consider multi-dimensional stresses. To verify the prediction capabilities of the proposed analytical procedure, 99 circular CFT experimental data instances from other studies were used for a comparison with AISC, Eurocode 4, and other researchers' predictions. From the comparison, it was revealed that the proposed procedure more accurately predicted the ultimate compressive strength of a circular CFT regardless of the range of the design variables, in this case the concrete compressive strength, yield strength of the steel tube and diameter relative to the thickness ratio of the tube.
 
Key Words
    CFT; confinement; hoop stress; nonlinear Poisson effect; ultimate strength
 
Address
Yu-A Kim and Jin-Kook Kim:Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811,
Republic of Korea

Ju-young Hwang:Department of Civil Engineering, Dong-Eui University, Busan 47340, Republic of Korea
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com