Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Steel and Composite Structures Volume 46, Number 2, January25 2023 , pages 175-193 DOI: https://doi.org/10.12989/scs.2023.46.2.175 |
|
|
Behaviour and design of stainless steel shear connectors in composite beams |
||
Yifan Zhou, Brian Uy, Jia Wang, Dongxu Li and Xinpei Liu
|
||
Abstract | ||
Stainless steel-concrete composite beam has become an attractive structural form for offshore bridges and iconic high-rise buildings, owing to the superior corrosion resistance and excellent ductility of stainless steel material. In a composite beam, stainless steel shear connectors play an important role by establishing the interconnection between stainless steel beam and concrete slab. To enable the best use of high strength stainless steel shear connectors in composite beams, high strength concrete is recommended. To date, the application of stainless steel shear connectors in composite beams is still very limited due to the lack of research and proper design recommendations. In this paper, a total of seven pushout specimens were tested to investigate the load-slip behaviour of stainless steel shear connectors. A thorough discussion has been made on the differences between stainless steel bolted connectors and welded studs, in terms of the failure modes, load-slip behaviour and ultimate shear resistance. In parallel with the experimental programme, a finite element model was developed in ABAQUS to simulate the behaviour of stainless steel shear connectors, with which the effects of shear connector strength, concrete strength and embedded connector height to diameter ratio (h/d) were evaluated. The obtained experimental and numerical results were analysed and compared with existing codes of practice, including AS/NZS 2327, EN 1994-1-1 and ANSI/AISC 360-16. The comparison results indicated that the current codes need to be improved for the design of high strength stainless steel shear connectors. On this basis, modified design approaches were proposed to predict the shear capacity of stainless steel bolted connectors and welded studs in the composite beams. | ||
Key Words | ||
bolted connector; pushout test; shear connector; stainless steel; welded stud | ||
Address | ||
Yifan Zhou, Brian Uy, Jia Wang, Dongxu Li and Xinpei Liu: School of Civil Engineering, The University of Sydney, Sydney, NSW, 2006, Australia | ||