Techno Press
You logged in as. Techno Press

Steel and Composite Structures
  Volume 45, Number 1, October 2022 , pages 133-145
DOI: https://doi.org/10.12989/scs.2022.45.1.133
 


Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading
Jia-Xiang Lin, Yong-Jian Cai, Ze-Ming Yang, Shu-Hua Xiao, Zhan-Biao Chen, Li-Juan Li, Yong-Chang Guo and Fei-Fei Wei

 
Abstract
    Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.
 
Key Words
    concrete flexural member; fiber volume ratios; flexural behavior; GFRP; steel fiber composite bar
 
Address
Jia-Xiang Lin, Yong-Jian Cai, Ze-Ming Yang, Shu-Hua Xiao, Zhan-Biao Chen, Li-Juan Li,
Yong-Chang Guo and Fei-Fei Wei:School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com