Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Steel and Composite Structures Volume 45, Number 1, October10 2022 , pages 83-100 DOI: https://doi.org/10.12989/scs.2022.45.1.083 |
|
|
Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings |
||
Ainullah-Mirzazadah and Saeed-Reza Sabbagh-Yazdi
|
||
Abstract | ||
Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression. | ||
Key Words | ||
cyclic analysis; incremental dynamic analysis; OpenSees; pushover analysis; steel moment frame; Timber Base Bracing Alternatives | ||
Address | ||
Ainullah-Mirzazadah and Saeed-Reza Sabbagh-Yazdi:Civil Engineering Department, K. N. Toosi University of Technology, No.1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran | ||