Techno Press
You logged in as. Techno Press

Steel and Composite Structures
  Volume 43, Number 1, April10 2022 , pages 129-137
DOI: https://doi.org/10.12989/scs.2022.43.1.129
 


Dynamic bending analysis of laminated porous concrete beam reinforced by nanoparticles considering porosity effects
Mohammad Karegar, Mahmood Rabani Bidgoli and Hamid Mazaheri

 
Abstract
    Dynamic response of a laminated porous concrete beam reinforced by nanoparticles subjected to harmonic transverse dynamic load is investigated considering structural damping. The effective nanocomposite properties are evaluated on the basis of Mori-Tanaka model. The concrete beam is modeled by the sinusoidal shear deformation theory (SSDT). Utilizing nonlinear strains-deflection, energy relations and Hamilton's principal, the governing final equations of the concrete laminated beam are calculated. Utilizing differential quadrature method (DQM) as well as Newmark method, the dynamic displacement of the concrete laminated beam is discussed. The influences of porosity parameter, nanoparticles volume percent, agglomeration of nanoparticles, boundary condition, geometrical parameters of the concrete beam and harmonic transverse dynamic load are studied on the dynamic displacement of the laminated structure. Results indicated that enhancing the nanoparticles volume percent leads to decrease in the dynamic displacement about 63%. In addition, with considering porosity of the concrete, the dynamic displacement enhances about 2.8 time.
 
Key Words
    DQM; dynamic response; laminated concrete porous beam; nanoparticles; newmark method
 
Address
Mohammad Karegar:Department of Civil Engineering, Khomein Branch, Islamic Azad University, Khomein, Iran

Mahmood Rabani Bidgoli:1)Department of Civil Engineering, Khomein Branch, Islamic Azad University, Khomein, Iran 2) Department of Civil Engineering, Jasb Branch, Islamic Azad University, Jasb, Iran

Hamid Mazaheri:Department of Civil Engineering, Khomein Branch, Islamic Azad University, Khomein, Iran
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com