Techno Press
You logged in as. Techno Press

Steel and Composite Structures
  Volume 36, Number 5, September10 2020 , pages 553-568
DOI: https://doi.org/10.12989/scs.2020.36.5.553
 

 open access

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders
Jun He, Zhaofei Lin, Yuqing Liu, Xiaoqing Xu, Haohui Xin and Sihao Wang

 
Abstract
    Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection
 
Key Words
    composite girder; headed studs; shear stiffness; elastic behaviors; push-out test
 
Address
Jun He: School of Civil Engineering, Changsha University of Science and Technology, Hunan, China;
Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh, UK
Zhaofei Lin: Country Garden, Guangdong, China
Yuqing Liu:Department of Bridge Engineering, Tongji University, Shanghai, China
Xiaoqing Xu: School of Civil Engineering, Chongqing University, Chongqing, China
Haohui Xin: School of Human Settlements and Civil Engineering, Xi\'an Jiaotong University, Xi\'an, China
Faculty of Geoscience and Engineering, Delft University of Technology, The Netherlands
Sihao Wang: Department of Bridge Engineering, Tongji University, Shanghai, China

 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com