Techno Press
You logged in as Techno Press

Steel and Composite Structures
  Volume 31, Number 6, June25 2019 , pages 591-600
DOI: https://doi.org/10.12989/scs.2019.31.6.591
 


Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system
Lizhong Jiang, Yulin Feng, Wangbao Zhou and Binbin He

 
Abstract
    Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.
 
Key Words
    timoshenko; high-speed railway; interlayer slip; shear deformation; critical length
 
Address
(1) Lizhong Jiang, Yulin Feng, Wangbao Zhou:
School of Civil Engineering, Central South University, Changsha 410075, China;
(2) Lizhong Jiang, Yulin Feng, Wangbao Zhou:
National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China;
(3) Binbin He:
University of Chinese Academy of Sciences, Beijing 100049, China.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com