Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Steel and Composite Structures Volume 30, Number 1, January10 2019 , pages 1-12 DOI: https://doi.org/10.12989/scs.2019.30.1.001 |
|
|
Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials |
||
Mahdi Fakoor, Roham Rafiee and Shahab Zare
|
||
Abstract | ||
In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode I cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode I is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined. | ||
Key Words | ||
orthotropic materials; fracture criterion; mixed mode; reinforced isotropic material; maximum tangential stress criterion | ||
Address | ||
Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran. | ||