Techno Press


Steel and Composite Structures   Volume 29, Number 2, October25 2018, pages 161-173
DOI: http://dx.doi.org/10.12989/scs.2018.29.2.161
 
Finite element modeling of rolled steel shapes subjected to weak axis bending
Najib G. Saliba, Issam Tawk and Antoine N. Gergess

 
Abstract     [Full Text]
    Point bending is often used for cambering and curving structural steel girders. An analytical solution, applicable in the elasto-plastic range only, that relates applied loads to the desired curve was recently developed for inducing horizontal curves using four-point bending. This solution does not account for initial residual stresses and geometric imperfections built-in hotrolled sections. This paper presents results from a full-scale test on a hot-rolled steel section curved using four-point bending. In parallel, a numerical analysis, accounting for both initial geometric imperfections and initial residual stresses, was carried out. The models were validated against the experimental results and a good agreement for lateral offset and for strain in the elastoplastic and post-plastic ranges was achieved. The results show that the effect of initial residual stresses on deformation and strain is minimal. Finally, residual stresses due to cold bending calculated from the numerical analysis were assessed and a revised stress value for the service load design of the curved girder is proposed.
 
Key Words
    curving; elasto-plastic; finite element; non-linear; point bending; post-plastic; residual stress; steel
 
Address
(1) Najib G. Saliba, Antoine N. Gergess:
Department of Civil Engineering, University of Balamand, El-Koura, Lebanon;
(2) Issam Tawk:
Department of Mechanical Engineering, University of Balamand, El-Koura, Lebanon.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com