Techno Press

Steel and Composite Structures   Volume 23, Number 2, February10 2017, pages 173-186
Conceptual configuration and seismic performance of high-rise steel braced frame
Shengfang Qiao, Xiaolei Han, Kemin Zhou and Weichen Li

Abstract     [Full Text]
    Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.
Key Words
    brace; topology optimization; seismic performance; incremental dynamic analysis; high-rise steel frame; pushover
(1) Shengfang Qiao, Xiaolei Han, Weichen Li:
School of Civil Engineering and Transportation, South China University of Technology, Tianhe, Guangzhou, 510641, China;
(2) Kemin Zhou:
College of Civil Engineering, Huaqiao University, Jimei, Xiamen, 361021, China.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: