Techno Press
You logged in as

Steel and Composite Structures   Volume 22, Number 6, December30 2016, pages 1301-1336
Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory
Narges Ebrahimi and Yaghoub Tadi Beni

Abstract     [Buy Article]
    In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton\'s principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.
Key Words
    piezoelectric effect; flexoelectric effect; consistent couple-stress theory; electromechanical size-dependent; first order shear deformable theory; extended Kantorovich method
(1) Narges Ebrahimi:
Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran;
(2) Yaghoub Tadi Beni:
Faculty of Engineering, Shahrekord University, Shahrekord, Iran.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: