Techno Press
You logged in as Techno Press

Steel and Composite Structures
  Volume 20, Number 6, April30 2016 , pages 1323-1343
DOI: https://doi.org/10.12989/scs.2016.20.6.1323
 


Numerical studies on behaviour of bolted ball-cylinder joint under axial force
Xiaonong Guo, Zewei Huang, Zhe Xiong, Shangfei Yang and Li Peng

 
Abstract
    This paper presents the results of an extensive numerical analysis program devoted to the investigation of the mechanical behaviour of bolted ball-cylinder joints. The analysis program is developed by means of finite element (FE) models implemented in the non-linear code ABAQUS. The FE models have been accurately calibrated on the basis of available experimental results. It is indicated that the FE models could be used effectively to describe the mechanical performance of bolted ball-cylinder joints, including failure modes, stress distributions and loaddisplacement curves. Therefore, the proposed FE models could be regarded as an efficient and accurate tool to investigate the mechanical behavior of bolted ball-cylinder joints. In addition, to develop a further investigation, parametric studies were performed, varying the dimensions of hollow cylinders, rectangular tubes, convex washers and ribbed stiffener. It is found that the dimensions of hollow cylinders, rectangular tubes and ribbed stiffener influenced the mechanical behaviour of bolted ball-cylinder joints significantly. On the contrary, the effects of the dimensions of convex washers were negligible.
 
Key Words
    bolted ball-cylinder joints; FE models; failure modes; parametric studies; mechanical behaviour
 
Address
(1) Xiaonong Guo, Zewei Huang, Zhe Xiong, Shangfei Yang:
Department of Building Engineering, Tongji University, Shanghai 200092, China;
(2) Li Peng:
Shanghai T&D Architechral Technology Co., Ltd., Shanghai 200092, China.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com