Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Steel and Composite Structures Volume 19, Number 6, December 2015 , pages 1449-1466 DOI: https://doi.org/10.12989/scs.2015.19.6.1449 |
|
|
Response modification factor of mixed structures |
||
Nader Fanaie and Shahab O. Shamlou
|
||
Abstract | ||
Mixed structures consist of two parts: a lower part and an upper part. The lower part is usually made of concrete while the upper part is made of steel. Analyzing these structures is complicated and code-based design of them has many associated problems. In this research, the seismic behavior of mixed structures which have reinforced concrete frames and shear walls in their lower storeys and steel frames with bracing in their upper storeys were studied. For this purpose, seventeen structures in three groups of 5, 9 and 15 storey structures with different numbers of concrete and steel storeys were designed. Static pushover analysis, linear dynamic analysis and incremental dynamic analysis (IDA) using 15 earthquake records were performed by OpenSees software. Seismic parameters such as period, response modification factor and ductility factor were then obtained for the mixed (hybrid) structures using more than 4600 nonlinear dynamic analysis and used in the regression analysis for achieving proper formula. Finally, some formulas, effective in designing such structures, are presented for the mentioned parameters. According to the results obtained from this research, the response modification factor values of mixed structures are lower compared to those of steel or concrete ones with the same heights. This fact might be due to the irregularities of stiffness, mass, etc., at different heights of the structure. It should be mentioned that for the first time, the performance and seismic response of such structures were studied against real earthquake accelerations using nonlinear dynamic analysis, andresponse modification factor was obtained by IDA. | ||
Key Words | ||
mixed structure; response modification factor; overstrength factor; ductility factor; transition storey | ||
Address | ||
Department of Civil Engineering, K.N. Toosi University of Technology, No.1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran. | ||