Techno Press

Steel and Composite Structures   Volume 18, Number 5, May 2015, pages 1161-1176
Energy dissipation of steel-polymer composite beam-column connector
Yun-Che Wang and Chih-Chin Ko

Abstract     [Full Text]
    The connection between a column and a beam is of particular importance to ensure the safety of civil engineering structures, such as high-rise buildings and bridges. While the connector must bear sufficient force for load transmission, increase of its ductility, toughness and damping may greatly enhance the overall safety of the structures. In this work, a composite beam-column connector is proposed and analyzed with the finite element method, including effects of elasticity, linear viscoelasticity, plasticity, as well as geometric nonlinearity. The composite connector consists of three parts: (1) soft steel; (2) polymer; and (3) conventional steel to be connected to beam and column. It is found that even in the linear range, the energy dissipation capacity of the composite connector is largely enhanced by the polymer material. Since the soft steel exhibits low yield stress and high ductility, hence under large deformation the soft steel has the plastic deformation to give rise to unique energy dissipation. With suitable geometric design, the connector may be tuned to exhibit different strengths and energy dissipation capabilities for real-world applications.
Key Words
    beam-column connector; soft steel; polymer; composite material; energy dissipation
Department of Civil Engineering, National Cheng Kung University, Tainan 70101, Taiwan.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: