Techno Press

Steel and Composite Structures   Volume 17, Number 6, December 2014, pages 929-949
Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes
Zongping Chen, Jinjun Xu, Ying Liang and Yisheng Su

Abstract     [Full Text]
    Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concretefilled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.
Key Words
    recycled aggregate concrete (RAC); shape steel; steel tube; bond mechanism; transmission length
(1) Zongping Chen, Jinjun Xu, Ying Liang, Yisheng Su:
College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, P.R. China;
(2) Zongping Chen:
Key Laboratory of Disaster Prevention and Structural Safety of Chinese Education Ministry, Guangxi University, Nanning, 530004, P.R. China.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: