Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Steel and Composite Structures Volume 10, Number 2, April 2010 , pages 129-149 DOI: https://doi.org/10.12989/scs.2010.10.2.129 |
|
|
Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures |
||
Joonho Choi, Heesun Kim and Rami Haj-ali
|
||
Abstract | ||
The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test. | ||
Key Words | ||
fire-dynamics; nonlinear finite elements; transient heat; steel-concrete; composite; structural behavior; fire simulation. | ||
Address | ||
Joonho Choi: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA Heesun Kim: College of Engineering, EWHA Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, South Korea Rami Haj-ali: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA | ||