Techno Press
You logged in as Techno Press

Membrane Water Treatment
  Volume 11, Number 6, November 2020, pages 407-416

Removal of acid black 1 by Acacia Concinna; adsorption kinetics, isotherm and thermodynamic study
Aqsa Naz, Hina Masood, Samreen Ehsan and Tayyab Tahir

    In the present research, batch adsorption of anionic dye such as Acid Black 1 (AB1) in aqueous solution onto biosorbent Acacia concinna was investigated at room temperature. The effect of various physico-chemical parameters such as contact time, adsorbent dosage, initial dye concentration and temperature on the percentage removal of dye were investigated. Adsorption kinetics was investigated using linear and nonlinear form of pseudo first-order and pseudo-second-order kinetic models but experimental data for adsorption of AB1 dye in aqueous mixture onto biosorbent Acacia concinna was fitted well to pseudo-second order model with maximum value of regression coefficient (0.9995). Linear and nonlinear forms of Langmuir, Freundlich, Tempkin, and Dubinin– Radushkevich (D–R) were used to reveal experimental data but experimental data for adsorption of AB1 dye in aqueous mixture onto biosorbent Acacia concinna fitted well to the Langmuir isotherm model with adsorption capacity 3.21✕10-4 Adsorption thermodynamic study showed that adsorption of AB1 dye onto adsorbent Acacia concinna was endothermic and spontaneous process. This study revealed that biosorbent Acacia concinna was good biosorbent for removal of dyes from aqueous solution.
Key Words
    adsorption; acid black 1; pseudo second order; nonlinear isotherms; three parameter isotherms; acacia concinna
Aqsa Naz, Hina Masood, Samreen Ehsan: Department of Chemistry, The Government Sadiq College Women University, Bahawalpur 63000, Pakistan
Tayyab Tahir: Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: