Techno Press
You logged in as Techno Press


  Volume 1, Number 2, December 2020, pages 115-129
DOI: https://doi.org/10.12989/mca.2020.1.2.115
 
open access

Multi-objective optimization of printing time and shape accuracy for FDM-fabricated ABS parts
Nikolaos A. Fountas, John D. Kechagias, Aris C. Tsiolikas and Nikolaos M. Vaxevanidis

 
Abstract
    Fused Deposition Modeling (FDM) is one of the most widely used Additive Manufacturing technologies that extrude a melted plastic filament through a heated nozzle in order to build final physical models layer-by-layer. In this research, a case study is presented in order to optimize process performance of a low cost FDM 3D printer. Taguchi method was first employed for the experimental procedure design and nine test parts were built according to L9 orthogonal array. The examined process parameters were the deposition angle, layer thickness, and infill ratio each one having three levels. Infill pattern was constant to honeycomb selection. Fabrication time of ABS (Acrylonitrile-Butadiene-Styrene) 3D printed specimens was measured during experiments and analyzed by using Analysis of Means (ANOM) and Analysis of Variance (ANOVA) techniques. Shape accuracy was measured by considering the parts' dimensions in X, Y and Z axes and expressed as the overall error for control. Regression models were developed to use them as objective functions for a group of multi-objective optimization algorithms. Multi-objective Greywolf (MOGWO), multi-objective antlion (MOALO), multi-verse (MOMVO) and multi-objective dragonfly (MODA) algorithms where implemented to simultaneously optimize the bi-objective FDM optimization problem. To evaluate the algorithms and judge superiority with reference to the non-dominated solution sets obtained the hypervolume (area) indicator was adopted. It was verified that algorithms perform differently to the problem formulated for optimizing the FDM process.
 
Key Words
    Fused Deposition Modeling; Additive Manufacturing; ABS; printing time; shape accuracy; process optimization
 
Address
Nikolaos A. Fountas and Nikolaos M. Vaxevanidis:Laboratory of Manufacturing Processes & Machine Tools (LMProMaT), Department of Mechanical Engineering Educators, School of Pedagogical and Technological Education (ASPETE),
Amarousion GR 151 22, Greece
John D. Kechagias and Aris C. Tsiolikas:Laboratory for Manufacturing Processes and Machine Tools, General Department,University of Thessaly, Gaiopolis Larissa, GR 41500, Greece
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com