Techno Press
You logged in as Techno Press

Geomechanics and Engineering
  Volume 6, Number 1, January 2014, pages 17-31

Characteristics of failure surfaces induced by embankments on soft ground
Eun-Soo Hong, Ki-Il Song, Yeo-Won Yoon and Jong-Wan Hu

    This paper investigates the development of failure surfaces induced by an embankment on soft marine clay deposits and the characteristics of such surfaces through numerical simulations and its comparative study with monitoring results. It is well known that the factor of safety of embankment slopes is closely related to the vertical loading, including the height of the embankment. That is, an increase in the embankment height reduces the factor of safety. However, few studies have examined the relationship between the lateral movement of soft soil beneath the embankment and the factor of safety. In addition, no study has investigated the distribution of the pore pressure coefficient B value along the failure surface. This paper conducts a continuum analysis using finite difference methods to characterize the development of failure surfaces during embankment construction on soft marine clay deposits. The results of the continuum analysis for failure surfaces, stress, displacement, and the factor of safety can be used for the management of embankment construction. In failure mechanism, it has been validated that a large shear displacement causes change of stress and pore pressure along the failure surface. In addition, the pore pressure coefficient B value decreases along the failure surface as the embankment height increases. This means that the rate of change in stress is higher than that in pore pressure.
Key Words
    trial embankment; pore pressure coefficient B; lateral movement; failure surface; continuum analysis
(1) Eun-Soo Hong:
BON E&C Co., Ltd. B-610, Seongnam Woorim Lions Vally 2, 146-8, Jungwon-gu, Seongnam-si, Gyeonggi-do, 462-120, Republic of Korea;
(2) Ki-Il Song and Yeo-Won Yoo:
Department of Civil Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 402-751, Republic of Korea;
(3) Jong-Wan Hu:
3Department of Civil and Environmental Engineering, College of Urban Science, University of Incheon, Incheon, 406-840, Republic of Korea; and Head of Center, Incheon Disaster Prevention Research Center, University of Incheon, 406-840, Republic of Korea.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: