Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Geomechanics and Engineering Volume 27, Number 6, December25 2021 , pages 615-626 DOI: https://doi.org/10.12989/gae.2021.27.6.615 |
|
|
A novel method for predicting the swelling potential of clay-bearing rocks |
||
Mahdi Moosavi and Saleh Ghadernejad
|
||
Abstract | ||
The main objective of this study is to present a fast and reliable approach to predict the swelling potential of clay-bearing rocks. Investigations showed that there is a good correlation between the swelling potential of a rock and its desire to absorb water due to its clay content which could be measured using the "Contact Angle" test as one of the most common ways to determine the wettability. In this test, the angle between a water drop and the flat rock surface on which it rests is measured. The present method is very fast and returns repeatable results and requires minimal sample preparation. Only having a saw-cut surface of a sample with any shape is all one needs to perform this test. The logic behind this approach is that the swelling potential of a rock is a function of its mineral content and molecular structure, which are not only distributed in the bulk of the sample but also reflected on its surface. Therefore, to evaluate swelling behavior, it is not necessary to wait for a sample to get wet all the way to its "internal structure" (which, due to the low permeability of clay-bearing rocks, is very slow and time-consuming). Instead, one can have a good sense of swelling potential by studying its surface. Parametric studies on the effect of moisture content, porosity, and surface roughness on the contact angle measurements showed that using a saw-cut oven-dried sample is a convenient way to evaluate the swelling potential by this method. | ||
Key Words | ||
clay-bearing materials; contact angle test; swelling strain; swelling test; wettability | ||
Address | ||
Mahdi Moosavi and Saleh Ghadernejad:School of Mining Engineering, The University of Tehran, Tehran, Iran | ||