Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
|
Geomechanics and Engineering Volume 26, Number 5, September10 2021 , pages 415-425 DOI: https://doi.org/10.12989/gae.2021.26.5.415 |
|
|
|
Seismic earth pressure on embankment gravity retaining wall with nonuniform slope |
||
Honglue Qu, Yuanyuan Deng, Qindi Hu, Xue Huang and Chenxu Wang
|
||
| Abstract | ||
| According to the results of a survey of retaining structures damaged by the Wenchuan earthquake, the damage to gravity retaining walls accounted for 97.1% of the total damage to retaining walls. Among gravity retaining structures, embankment gravity retaining walls with nonuniform slopes are more prone to be disturbed under seismic conditions. However, relatively few studies have been performed to calculate the seismic earth pressure on such structures. In this study, a simplified approach is presented to calculate the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes. In the proposed approach, the equations are derived based on the primary assumptions of the Mononobe–Okabe theory and the limit equilibrium state of the quadrilateral slip soil wedge. To verify the applicability of the proposed approach, a large-scale shaking-table test was conducted to obtain the distribution of the seismic earth pressure, the magnitude of earth pressure resultant force, the resultant force action point, and slip surface of an embankment gravity retaining wall with a nonuniform slope, under various peak ground accelerations. A comparison indicates that the calculated results were in agreement with the experimental results, implying that the proposed approach is valid for calculating the seismic earth pressure on embankment gravity retaining walls with nonuniform slopes. | ||
| Key Words | ||
| embankment gravity retaining wall with nonuniform slope; peak ground acceleration; seismic earth pressure; shaking-table test | ||
| Address | ||
| Honglue Qu, Yuanyuan Deng, Qindi Hu, Xue Huang and Chenxu Wang: School of Geoscience and Technology, Southwest Petroleum University, No. 8, Xindu Avenue, Xindu District, Chengdu, Sichuan, China | ||