Techno Press
You logged in as Techno Press

Geomechanics and Engineering
  Volume 11, Number 5, November 2016, pages 671-690

A refined theory with stretching effect for the flexure analysis of laminated composite plates
Kada Draiche, Abdelouahed Tounsi and S.R. Mahmoud

    This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (εz ≠ 0), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.
Key Words
    shear deformation; stretching effect; static flexure; laminated plate
(1) Kada Draiche:
Département de Génie Civil, Université Ibn Khaldoun Tiaret, BP 78Zaaroura, 1400 Tiaret, Algérie;
(2) Kada Draiche, Abdelouahed Tounsi:
Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria;
(3) Abdelouahed Tounsi:
Laboratoire de Modélisation et Simulation Multi-echelle, Département de Physique, Faculte des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria;
(4) S.R. Mahmoud:
Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia;
(5) S.R. Mahmoud:
Mathematics Department, Faculty of Science, University of Sohag, Egypt.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: