Techno Press
You logged in as. Techno Press

Earthquakes and Structures
  Volume 7, Number 6, December 2014 , pages 1119-1139
DOI: https://doi.org/10.12989/eas.2014.7.6.1073
 


Damage-based optimization of large-scale steel structures
A. Kaveh, M. Kalateh-Ahani and M. Fahimi-Farzam

 
Abstract
    A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve \"repairable\" damage state for earthquake demands that are less severe than the design ground motions. The Park–Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.
 
Key Words
    damage-based design methodology; steel frame structures; Park-Ang damage index; charged system search algorithm; equivalent SDOF system; fitness approximation
 
Address
A. Kaveh, M. Kalateh-Ahani and M. Fahimi-Farzam: Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com