Techno Press
You logged in as Techno Press

Earthquakes and Structures
  Volume 11, Number 1, July 2016, pages 165-178
DOI: http://dx.doi.org/10.12989/eas.2016.11.1.165
 


Estimation of earthquake induced story hysteretic energy of multi-Story buildings
Feng Wang, Ning Zhang and Zhiyu Huang

 
Abstract
    The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-offreedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.
 
Key Words
    hysteretic energy demand; nonlinear response history analysis; pushover analysis; equivalent SDOF system; earthquake excitation
 
Address
Feng Wang, Zhiyu Huang: College of Civil Engineering, Dalian Minzu University, Dalian, China

Ning Zhang: Dalian Polytechnic University, Dalian, China
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2021 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com