Techno Press
You logged in as Techno Press

Computers and Concrete
  Volume 7, Number 2, April 2010 , pages 103-118
DOI: https://doi.org/10.12989/cac.2010.7.2.103
 


Comparing finite element and meshfree particle formulations for projectile penetration into fiber reinforced concrete
James O

 
Abstract
    Penetration of a fragment-like projectile into Fiber Reinforced Concrete (FRC) was simulated using finite element (FE) and particle formulations. Extreme deformations and failure of the material during the penetration event were modeled with multiple approaches to evaluate how well each represented the actual physics of the penetration process and compared to experimental data. A Fragment Simulating Projectile (FSP) normally impacting a flat, square plate of FRC was modeled using two target thicknesses to examine the different levels of damage. The thinner plate was perforated by the FSP, while the thicker plate captured the FSP and only allowed penetration part way through the thickness. Full three dimensional simulations were performed, so the capability was present for non-symmetric FRC behavior and possible projectile rotation in all directions. These calculations assessed the ability of the finite element and particle formulations to calculate penetration response while assessing criteria necessary to perform the computations. The numerical code EPIC contains the element and particle formulations, as well as the explicit methodology and constitutive models, needed to perform these simulations.
 
Key Words
    Fiber Reinforced Concrete; finite element; meshfree; penetration.
 
Address
James O
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com