Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Computers and Concrete Volume 33, Number 4, April 2024 (Special Issue) pages 445-469 DOI: https://doi.org/10.12989/cac.2024.33.4.445 |
|
|
Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways |
||
Emin Sengun
|
||
Abstract | ||
The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions. | ||
Key Words | ||
calibration; joint faulting; long-term pavement performance; mechanistic-empirical pavement design; rollercompacted concrete; transverse cracking | ||
Address | ||
Department of Civil Engineering, Ankara Yildirim Beyazit University, Ankara, Türkiye | ||