Techno Press
You logged in as Techno Press

Computers and Concrete
  Volume 3, Number 5, October 2006 , pages 357-373

A mortar mix proportion design algorithm based rnon artificial neural networks
Tao Ji and Xu Jian Lin

    The concepts of four parameters of nominal water-cement ratio, equivalent water-cement ratio, average paste thickness, fly ash-binder ratio were introduced. It was verified that the four parameters and the mix proportion of mortar can be transformed each other. The behaviors (strength, workability, et al.) of mortar primarily determined by the mix proportion of mortar now depend on the four parameters. The prediction models of strength and workability of mortar were built based on artificial neural networks (ANNs). The calculation models of average paste thickness and equivalent water-cement ratio of mortar can be obtained by the reversal deduction of the two prediction models, respectively. A mortar mix proportion design algorithm was proposed. The proposed mortar mix proportion design algorithm is expected to reduce the number of trial and error, save cost, laborers and time.
Key Words
    mortar mix proportion design; artificial neural network (ANN); nominal water-cement ratio; equivalent water-cement ratio; average paste thickness (APT); fly ash-binder ratio.
College of Civil Engineering, Fuzhou University, Fuzhou, Fujian Province, 350002, China

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2023 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: