Techno Press
You logged in as Techno Press

Computers and Concrete
  Volume 21, Number 3, March 2018 , pages 249-259
DOI: https://doi.org/10.12989/cac.2018.21.3.249
 


Pull-out behaviour of recycled aggregate based self compacting concrete
Rakesh Siempu and Rathish Kumar Pancharathi

 
Abstract
    The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar (Db=10, 12 and 16 mm) and embedment length of bar (Ld=2.5Db, 5Db and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.
 
Key Words
    sustainable construction; recycled concrete aggregates; pull-out test; bond stress and slip
 
Address
Rakesh Siempu, Rathish Kumar Pancharathi: Department of Civil Engineering, National Institute of Technology, Warangal, India
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com