Techno Press
You logged in as Techno Press

Computers and Concrete
  Volume 19, Number 5, May 2017 , pages 501-507
DOI: https://doi.org/10.12989/cac.2017.19.5.501
 


Theoretical formulation of double scalar damage variables
Xinhua Xue and Wohua Zhang

 
Abstract
    The predictive utility of a damage model depends heavily on its particular choice of a damage variable, which serves as a macroscopic approximation in describing the underlying micromechanical processes of microdefects. In the case of spatially perfectly randomly distributed microcracks or microvoids in all directions, isotropic damage model is an appropriate choice, and scalar damage variables were widely used for isotropic or one-dimensional phenomenological damage models. The simplicity of a scalar damage representation is indeed very attractive. However, a scalar damage model is of somewhat limited use in practice. In order to entirely characterize the isotropic damage behaviors of damaged materials in multidimensional space, a system theory of isotropic double scalar damage variables, including the expressions of specific damage energy release rate, the coupled constitutive equations corresponding to damage, the conditions of admissibility for two scalar damage effective tensors within the framework of the thermodynamics of irreversible processes, was provided and analyzed in this study. Compared with the former studies, the theoretical formulations of double scalar damage variables in this study are given in the form of matrix, which has many features such as simpleness, directness, convenience and programmable characteristics. It is worth mentioning that the above-mentioned theoretical formulations are only logically reasonable. Owing to the limitations of time, conditions, funds, etc. they should be subject to multifaceted experiments before their innovative significance can be fully verified. The current level of research can be regarded as an exploratory attempt in this field.
 
Key Words
    double scalar damage variables; damage energy release rate; isotropic; irreversible thermodynamics; theoretical analysis
 
Address
Xinhua Xue: State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, P.R.China
Wohua Zhang: College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P.R.China
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com