Techno Press
You logged in as Techno Press

Advances in Materials Research
  Volume 6, Number 3, September 2017, pages 303-316
DOI: http://dx.doi.org/10.12989/amr.2017.6.3.303
 

Synthesis of ArOTiCl3 complexes and their application for ethylene polymerization and copolymerization
Jianwei Wang, Yingchun Ren, Sheng Xu and Puke Mi

 
Abstract     [Full Text]
    In this article, novel olefin polymerization catalyst with lower cost and simple synthetic process were developed, ArOTiCl3 complexes [(2-OMeC6H4O)TiCl3(C1), (2,4-Me2C6H3O)TiCl3(C2), TiCl3(1,4-OC6H4O)TiCl3 (C3), TiCl3(1,4-OC6H2O-Me2-2,5) TiCl3(C4)] and corresponding (ArO)2TiCl2 complexes [TiCl2(OC6H4-OMe-2)2(C5) and TiCl2(OC6H3-Me2-2,6)2(C6)] have been synthesized by the reaction of TiCl4 with phenol, all these complexes were well characterized with 1H NMR,13C NMR, MASS and EA. When combined with methylaluminoxane (MAO), the ArOTiCl3 / MAO system shows high activity for ethylene copolymerization with 1-octene and copolymer was obtained with broaden molecular weight distribution (MWD). The 13C NMR result of polymer indicates that the 1-octene incorporation in polymer reached up to 8.29 mol%. The effects of polymerization temperature, concentration of polymerization monomer and polymerization time on the catalytic activity have been investigated.
 
Key Words
    ArOTiCl3 complex; catalyst; ethylene/1-octene; copolymerization
 
Address
(1) Jianwei Wang, Sheng Xu, Puke Mi:
School of Materical Science and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China;
(2) Yingchun Ren, Sheng Xu:
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com