Techno Press
You logged in as Techno Press

Advances in Environmental Research
  Volume 5, Number 4, December 2016 , pages 251-262
DOI: https://doi.org/10.12989/aer.2016.5.4.251
 

Effects of ultrasound coupled with potassium permanganate pre-treatment of sludge on aerobic digestion
Ozlem Demir

 
Abstract
    The biodegradability and decomposition efficiencies increase with the pre-treatment of sludge in a digestion process. In this study, the feasibility of ultrasound coupled with potassium permanganate oxidation as a disintegration method and digestibility of aerobic reactor fed with disintegrated sludge with ultrasound coupled potassium permanganate were investigated. The first stage of the study focused on determining the optimum condition for ultrasonic pre-treatment for achieving better destruction efficiency of sludge. The second part of the study, the aerobic digestibility of sludge disintegrated with ultrasound and potassium permanganate oxidation alone and combined were examined comparatively. The results showed that when 20 min of ultrasonic pre-treatment applied, the specific energy output was 49384 kJ/kgTS with disintegration degree of 58.84%. During the operation of aerobic digester, VS/TS ratios of digesters fed with disintegrated sludge decreased indicating that disintegration methods could obviously enhance aerobic digestion performance. The highest reduction in volatile solids was 75% in the digester fed with ultrasound+potassium permanganate disintegrated sludge at the end of the operation compared to digester fed with raw sludge. Total Nitrogen (TN) and Total Phosphorus (TP) levels in sludge supernatant increased with this combined method significantly. Besides, it promoted the production of OH, thus enhancing the release of Carbon (C), Nitrogen (N) and Phosphorus (P) from the sludge. Disintegration with all methods used in this study could not improve Capillary Suction Time (CST) reduction in disintegrated digesters during the operation. The results demonstrated that the combined ultrasound treatment and potassium permanganate oxidation method improves the biodegradability compared to control reactor or their single application.
 
Key Words
    aerobic digestion; disintegration; ultrasonic treatment; potassium permanganate disintegration
 
Address
Harran University, Engineering Faculty, Environmental Engineering Department, Osmanbey Campus, 63000, sanliurfa, Turkey
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2025 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com