Techno Press
You logged in as You Query in as select * from journal_acc where volume=3 and num=3 and ordernum=3 Techno Press

Advances in Concrete Construction
  Volume 3, Number 3, September 2015 , pages 203-221
DOI: https://doi.org/10.12989/acc.2015.3.3.203
 


Influence of silpozz and rice husk ash on enhancement of concrete strength
K.C. Panda and S.D. Prusty

 
Abstract
    This paper presents the results of a study undertaken to investigate the enhancement of concrete strength using Silpozz and Rice Husk Ash (RHA). The total percentage of supplementary cementitious material (SCM) substituted in this study was 20%. Six different concrete mixes were prepared such as without replacement of cement with silpozz and RHA (0% silpozz and 0% RHA) is treated as conventional concrete, whereas in other five concrete mixes cement was replaced by 20% of silpozz and RHA as (0% silpozz and 20% RHA), (5% silpozz and 15% RHA), (10% silpozz and 10% RHA), (15% silpozz and 5% RHA) and (20% silpozz and 0% RHA) with decreasing water-binder (w/b) ratio i.e. 0.375, 0.325 and 0.275 and increasing super plasticiser dose. New generation polycarboxylate base water reducing admixture i.e.,Cera Hyperplast XR-W40 was used in this study. The results of this research indicate that as w/b decreases,super plasticiser dose need to be increased so as to increase the workability of concrete. The effects of replacing cement by silpozz and RHA on the compressive strength, split tensile strength and flexural strength were evaluated. The concrete mixture with different combination of silpozz and RHA gives higher strength as compared to control specimen for all w/b ratios and also observed that the early age strength of concrete is more as compared to the later age strength. It is also observed that the strength enhancement of concrete mixture prepared with the combination of cement, silpozz and RHA is higher as compared to the concrete mixture prepared with cement and silpozz or cement and RHA.
 
Key Words
    rice husk ash (RHA); silpozz; compressive strength; flexural strength; split tensile strength
 
Address
K.C. Panda: Department of Civil Engineering, ITER, SOA University, Bhubaneswar, Odisha, India, 751030
S.D. Prusty: Post Graduate Student, Department of Civil Engineering, ITER,SOA University, Bhubaneswar, Odisha, India
 
References
    -acc0303003-
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2022 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com