Buy article PDF
The purchased file will be sent to you
via email after the payment is completed.
US$ 35
Advances in Concrete Construction Volume 13, Number 5, May 2022 , pages 361-365 DOI: https://doi.org/10.12989/acc.2022.13.5.361 |
|
|
Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow |
||
Chuanzhang Zheng, Gongxing Yan, Mohamed Amiine Khadimallah,
Alireza Zamani Nouri and Amir Behshad
|
||
Abstract | ||
The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure twofluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced. | ||
Key Words | ||
critical fluid velocity; dynamic response; hyperbolic shear deformation theory; numerical method; twophase flow | ||
Address | ||
Chuanzhang Zheng, Gongxing Yan: School of Architectural Engineering, Chongqing Creation Vocational College, Yongchuan 402160, Chongqing, China Mohamed Amiine Khadimallah: Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16273, Saudi Arabia; Laboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia Alireza Zamani Nouri: Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran Amir Behshad: Faculty of Technology and Mining, Yasouj University, Choram 75761-59836, Iran | ||
References | ||
| ||