Techno Press
You logged in as

You have a Free online access/download for a limited time.
Advances in Concrete Construction   Volume 1, Number 1, March 2013, pages 85-102
Numerical Bayesian updating of prior distributions for concrete strength properties considering conformity control
Robby Caspeele and Luc Taerwe

Abstract     [Full Text]
    Prior concrete strength distributions can be updated by using direct information from test results as well as by taking into account indirect information due to conformity control. Due to the filtering effect of conformity control, the distribution of the material property in the accepted inspected lots will have lower fraction defectives in comparison to the distribution of the entire production (before or without inspection). A methodology is presented to quantify this influence in a Bayesian framework based on prior knowledge with respect to the hyperparameters of concrete strength distributions. An algorithm is presented in order to update prior distributions through numerical integration, taking into account the operating characteristic of the applied conformity criteria, calculated based on Monte Carlo simulations. Different examples are given to derive suitable hyperparameters for incoming strength distributions of concrete offered for conformity assessment, using updated available prior information, maximum-likelihood estimators or a bootstrap procedure. Furthermore, the updating procedure based on direct as well as indirect information obtained by conformity assessment is illustrated and used to quantify the filtering effect of conformity criteria on concrete strength distributions in case of a specific set of conformity criteria.
Key Words
    Bayesian updating; concrete strength; conformity control; EN 206-1; operating characteristic; prior information
Robby Caspeele and Luc Taerwe: Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Ghent, Belgium
  1. Ang, A.H.S. and Tang, W.H. (2007), Probability concepts in engineering, second ed., John Wiley & Sons, New York, USA.
  2. Box, G. and Tiao, G. (1973), Bayesian inference in statistical analysis, Addison-Wesly Publishing Company, USA.
  3. Caspeele, R (2010), Probabilistic evaluation of conformity control and the use of Bayesian updating techniques in the framework of safety analyses of concrete structures, Ph.D. thesis, Ghent University, Ghent, Belgium.
  4. Caspeele, R., Sykora, M. and Taerwe, L. (2010), "Quantifying the filtering effect of conformity inspection on the reliability of reinforced concrete structures", Proceedings 8th International Probabilistic Workshop, Szczecin, Poland, 47-60.
  5. Caspeele, R. and Taerwe, L. (2011a), "Probabilistic evaluation of conformity criteria for concrete families", Mater. Struct., 44(7), 1219-1231.
  6. Caspeele, R and Taerwe, L. (2011b), "Statistical comparison of data from concrete families in ready-mixed concrete plants", Struct. Concrete, 12(3), 148-154.
  7. Caspeele, R. and Taerwe, L. (2012), "Bayesian assessment of the characteristic concrete compressive strength using combined vague-informative priors", Constr. Build. Mater., 28(1), 342-350.
  8. CEN (2000), EN 206-1: Concrete – Part 1: Specification, performance, production and conformity, European Standard, European Committee for Standardization, Brussels, Belgium.
  9. Degerman, T. (1981), Design of concrete structures with probabilistic methods (in Swedish), Report TVBK-1003, Department of Building Technology, Lund Institute of Technology, 116-125.
  10. Der Kiureghian, A. (2008), "Analysis of structural reliability under parameter uncertainties", Probab. Eng. Mech., 23(4), 351-358.
  11. Diamantidis, D. et al. (2001), Probabilistic assessment of existing structures, RILEM Publications S.A.R.L., France.
  12. Efron, B. (1979), "Bootstrap methods: Another look at the jackknife", Ann. Stat., 7(1), 1-26.
  13. Higgins, J.J. (2004), Introduction to modern nonparametric statistics, Brooks/Cole, USA.
  14. Jacinto, L., Pipa, M., Neves, L.A.C. and Santos, L.O. (2012), "Probabilistic models for mechanical properties of prestressing strands", Constr. Build. Mater., 36, 84-89.
  15. Moore, D.S. and McCabe, G.P. (2006), Introduction to the practice of statistics, 5th ed., W.H. Freeman & Company, USA.
  16. Moser, T., Strauss, A. and Bergmeister, K. (2011), "Partial safety factors for reinforced concrete structures - verification of the shear capacity" (in German), Beton- und Stahlbetonbau, 106(12), 814-826.
  17. Most, T. (2009), "Estimating uncertainties in maximum entropy distribution parameters from small-sample observations", Proceedings of the European Safety and Reliability Conference (ESREL), Prague, Czech Republic, 1745-1752.
  18. Orton, S.L., Kwon, O.S. and Hazlett, T. (2012), "Statistical distribution of bridge resistance using updated material properties", ASCE J. Bridge Eng., 17(3), 462-469.
  19. Rackwitz, R. (1977), "A simple stochastic model for in-situ concrete strength", Miscellaneous papers in civil engineering, Dialog, Danmarks Ingeniorakademi, bygningsafdelingen, Lyngby, 117-133.
  20. Rackwitz, R. (1979), "Über die Wirkung von Abnahmekontrollen auf das Verteilungsgesetz von normalen Produktionsprozessen bei bekannter Standardabweichung" (in German), Materialprüfung, 21, 122-124.
  21. Rackwitz, R. (1981), "Zur Statistik von Eignungs- und Zulassungsversuchen für Bauteile" (in German), Bauingenieur, 56(3), 103-107.
  22. Rackwitz, R. (1983), "Predictive distribution of strength under control", Mater. Struct., 16(4), 259-267.
  23. Raiffa, H. and Schlaifer, R. (1969), Applied statistical decision theory, MIT Press, Cambridge, Massachusetts Institute of Technology, USA.
  24. Soroka, I. (1972), Length of concreting period and compressive strength variation in concrete, Document 017-213, Techanion, Israel, Institute of Technology, 1-10.
  25. Strauss, A., Frangopol, D.M. and Kim, S. (2008), "Use of monitoring extreme data for the performance prediction of structures: Bayesian updating", Eng. Struct., 30(12), 3654-3666.
  26. Taerwe, L. (1985), Aspects of the stochastic nature of concrete strength including compliance control (in Dutch), Ph.D. thesis, Ghent University, Ghent, Belgium.
  27. Taerwe, L. (1987a), "Influence of autocorrelation on OC-lines of compliance criteria for concrete strength", Mater. Struct., 20(6), 418-427.
  28. Taerwe, L. (1987b), "Serial correlation in concrete strength records", Special Publication ACI SP-104, Lewis H. Tuthill International Symposium on Concrete and Concrete Construction, Detroit, USA.
  29. Taerwe, L. (1988), "Evaluation of compound compliance criteria for concrete strength", Mater. Struct., 21(1), 13-20.
  30. Taerwe, L. (2006), "Analysis and modelling of autocorrelation in concrete strength series", Proceedings 4th International Probabilistic Symposium, Berlin, 57-70.
  31. Taerwe, L. and Caspeele, R. (2006), "Conformity control of concrete: some basic aspects", Proceedings 4th International Probabilistic Symposium, Berlin, 57-70.
  32. Vrouwenvelder, T. (1997), "The JCSS probabilistic model code", Struct. Saf., 19(3), 245-251.
  33. Wisniewsky, D.F., Cruz, P.J.S., Henriques, A.A.R. and Simões, R.A.D. (2012), "Probabilistic models for mechanical properties of concrete, reinforcing steel and pre-stressing steel", Struct. Infrastruct. E., 8(2), 111-123.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: