Techno Press
You logged in as Techno Press

Advances in Aircraft and Spacecraft Science
  Volume 7, Number 2, March 2020 , pages 91-113
DOI: https://doi.org/10.12989/aas.2020.7.2.091
 

Multibody simulation and descent control of a space lander
A. Pagani, R. Azzara, R. Augello and E. Carrera

 
Abstract
    This paper analyzes the terminal descent phase of a space lander on a surface of a celestial body. A multibody approach is adopted to build the physical model of the lander and the surface. In this work, a legged landing gear system is considered. Opportune modelling of the landing gear crashbox is implemented in order to accurately predict the kinetic energy. To ensure the stability of the lander while impacting the ground and to reduce the contact forces that arise in this maneuver, the multibody model makes use of a cosimulation with a dedicated control system. Two types of control systems are considered; one with only position variables and the other with position and velocity variables. The results demonstrate the good reliability of modern multibody technology to incorporate control algorithms to carry out stability analysis of ground impact of space landers. Moreover, from a comparison between the two control systems adopted, it is shown how the velocity control leads to lower contact forces and fuel consumption.
 
Key Words
    multibody simulation; space landers; landing stability; control system
 
Address
A. Pagani, R. Azzara, R. Augello and E. Carrera: Mul2 group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: admin@techno-press.com