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Concrete Compressive Strength Prediction Using ML

Condition OPC w/o 
admixture

Concrete w/o 
AE

Concrete w/
AE OPC

High early 
strength 
Portland 
Cement

Moderate heat 
Portland 
Cement

Estimation 
Equation

ݓ
ܿ
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ݓ
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݇ + 0.31

ݓ
ܿ
=

41
ଶ଼݂
݇ + 0.17

ݓ
ܿ
=

66
ଶ଼݂
݇ + 0.64

Reference

Korea 
Concrete 
Standard 

Specification 
(1999)

US ACI 211.1 (1993) Japan Construction Standard Specification (2003)
*݇ denotes the strength of cement
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• Dataset was created by combining 38 data from experiments and 1030 data from open-source.

• Total dataset (1068) was divided into training set (748; 70%) and testing set (320; 30%).
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Cement Blast furnace slag Fly ash Water

Compressive 
strength

Coarse aggregate Fine aggregate Superplasticizer Age



• Heat map visualization Compressive strength (target)

1) Positive effect
: Cement, blast furnace slag, superplasticizer, 
and age

2) Negative effect
: Fly ash, water, coarse aggregate, and fine 
aggregate
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• In this study, several machine learning models were introduced to compare regression performance.

• Linear Regression
• Decision Tree
• Ensemble Tree
• Support Vector Machine
• Gaussian Process Regression
• Neural Network (Deep Learning)
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• Linear regression • Decision tree

https://www.ingeniovirtual.com/descubrezapatillas/tags/4268?p=6.28.4121027.1.25.43.supervised+learning+linear+regression
https://iprathore71.medium.com/complete-guide-to-decision-tree-cee0238128d
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https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-11-%EC%95%99%EC%83%81%EB%B8%94-%ED%95%99%EC%8A%B5-Ensemble-Learning-%EB%B0%B0%EA%B9%85Bagging%EA%B3%BC-
%EB%B6%80%EC%8A%A4%ED%8C%85Boosting
swallow.github.io / Medium (Boosting and Bagging explained with examples)

• Ensemble (Bagged trees) • Ensemble (Boosted trees)
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https://medium.com/it-paragon/support-vector-machine-regression-cf65348b6345
https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_fig1_327613136

• Support Vector Machine • Gaussian process regression
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https://ksra.eu/extending-mlp-ann-hyper-parameters-optimization-by-using-genetic-algorithm/

• Neural network
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• Data preprocessing (normalization)
: Min-max scaler

• How to evaluate model performance?
1) RMSE
2) R-square
3) MAE
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• Linear Regression (LR) 

Simple LR Interactions LR Robust LR Stepwise LR
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Types of Machine 
Learning Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Linear
Regression

(LR)

Simple LR 0.1286 0.1325 0.6236 0.5926 0.1006 0.1035

Interactions 
LR 0.1051 0.1085 0.7554 0.7269 0.0821 0.0858

Robust LR 0.1109 0.2119 0.8326 -0.0415 0.1060 0.1190

Stepwise 
LR 0.1095 0.1116 0.7296 0.6850 0.0848 0.0894
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• Decision Tree (DT) 

Fine DT (4) Medium DT (12) Coarse DT (36)
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Types of Machine 
Learning Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Decision 
Tree
(DT)

Fine DT 0.0539 0.0894 0.9329 0.8147 0.0381 0.0640

Medium 
DT 0.0802 0.0933 0.8515 0.7983 0.0598 0.0729

Coarse DT 0.1072 0.1160 0.7348 0.6980 0.0828 0.0925
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• Support Vector Machine (SVM) 

Linear SVM Quadratic SVM Cubic SVM
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• Support Vector Machine (SVM) 

Fine Gaussian SVM (0.71) Medium Gaussian SVM (2.8) Coarse Gaussian SVM (11)
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Types of Machine Learning 
Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Support 
Vector 

Machine 
(SVM)

Linear SVM 0.1341 0.1474 0.5850 0.4964 0.0985 0.1048

Quadratic SVM 0.0948 0.0963 0.7926 0.7847 0.0707 0.0717

Cubic SVM 0.0738 0.0851 0.8745 0.8319 0.0534 0.0622

Fine Gaussian 
SVM 0.0825 0.0882 0.8430 0.8197 0.0595 0.0652

Medium 
Gaussian SVM 0.1207 0.1253 0.6637 0.6362 0.0947 0.0987

Coarse 
Gaussian SVM 0.1731 0.1740 0.3085 0.2976 0.1391 0.1396
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• Ensemble (EN) 

Boosted Trees EN Bagged Trees EN
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Types of Machine 
Learning Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Ensemble
(EN)

Boosted 
Trees EN 0.0671 0.0786 0.8963 0.8569 0.0508 0.0584

Bagged 
Trees EN 0.0553 0.0717 0.9293 0.8807 0.0410 0.0536
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• Gaussian Process Regression (GPR) 

Squared Exponential GPR Matern 5/2 GPR Exponential GPR Rational Quadratic 
GPR
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Types of Machine 
Learning Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Gaussian 
Process 

Regression 
(GPR)

Squared 
Exponential 

GPR
0.0544 0.0665 0.9318 0.8976 0.0406 0.0509

Matern 5/2 
GPR 0.0517 0.0646 0.9383 0.9033 0.0382 0.0488

Exponential 
GPR 0.0315 0.0661 0.9771 0.8988 0.0211 0.0473

Rational 
Quadratic 

GPR
0.0540 0.0658 0.9326 0.8997 0.0403 0.0505
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• Neural Network (NN) 

Narrow NN (10, ReLu) Medium NN (25, ReLu) Wide NN (100, ReLu)
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• Neural Network (NN)

Bi-layered NN ([10, 10], ReLu) Tri-layered NN ([10, 10, 10], ReLu)
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Types of Machine 
Learning Model

RMSE Coefficient of 
Determination MAE

Training Testing Training Testing Training Testing

Neural 
Network 

(NN)

Narrow NN 0.0652 0.0874 0.9020 0.8229 0.0484 0.0663

Medium 
NN 0.0610 0.0699 0.9140 0.8867 0.0435 0.0526

Wide NN 0.0721 0.0863 0.8802 0.8274 0.0528 0.0598

Bi-layered 
NN 0.0747 0.0702 0.8714 0.8858 0.0577 0.0543

Tri-layered 
NN 0.0711 0.0783 0.8833 0.8579 0.0537 0.0604
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- For concrete compressive strength prediction, cement, blast furnace slag, fly ash, water, superplasticizer, coarse 

aggregate, fine aggregate, and age were used as input variables.

- As shown in the results, GPR (Gaussian Process Regression) and ANN (Artificial Neural Network) models 

outperformed other machine learning models.

- By considering more variables such as curing temperature, humidity, and detailed aggregate size information, the 

prediction accuracy of machine learning models can be improved in the future.

Concrete Compressive Strength Prediction Using ML

Summary
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Research Background

Lack of Lands to Develop Increasing City Density Emerging High-rise Building

Wind Pressure Coefficients Prediction Using LSTM RNN



Problem Statement & Research Objective

Deep Learning Recurrent Neural Network Long Short Term Memory Cell Model

Wind Pressure Coefficients Prediction Using LSTM RNN



Theoretical Background

Recurrent Neural Network

LSTM Network

Predict Output Using Previous and Current Data

Problem of Long Term Dependency

Wind Pressure Coefficients Prediction Using LSTM RNN



Theoretical Background

Forget Gate

Input Gate

Update Gate

Output Gate
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Research Framework

Access TPU aerodynamics database

Wind pressure data for high-rise building

Import .csv time-series ata file into Python Import deep learning libraries (Tensorflow, Keras, etc.) 

Preprocessing the data (min-max scaling, input parameter control)

Construct the LSTM model

Figure out appropriate hyper-parameters Divide the data into training-set and testing-set

Predict the wind-pressure coefficients and evaluate the accuracy

Wind Pressure Coefficients Prediction Using LSTM RNN



Data Exploration

45 degree – Mean valuePressure Tap Locations 45 degree – RMS value

Wind Pressure Coefficients Prediction Using LSTM RNN



Methodology

Hyper-parameters

Epoch : 100

Drop-out Ratio : 0.05

Batch Size : 10

Time-Series Data

Wind Attack Angles : 11 angles

0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 degrees

Each data has 32768 points during 32.768 sec.

Training Set : 26214 points (80%)

Testing Set : 6554 points (20%)

500 pressure taps : 500 time-series x 32768 points

※ All data are normalized with min-max scaler

Wind Pressure Coefficients Prediction Using LSTM RNN



Model Development

Building LSTM Model Training Network

Wind Pressure Coefficients Prediction Using LSTM RNN



Results

Attack 
Angle 0 deg 5 deg 10 deg 15 deg 20 deg 25 deg 30 deg 35 deg 40 deg 45 deg 50 deg

RMSE 0.04993 0.03380 0.04038 0.04504 0.04224 0.04564 0.03601 0.03911 0.05655 0.03961 0.04659

Wind Pressure Coefficients Prediction Using LSTM RNN



Discussion

Attack 
Angle 0 deg 5 deg 10 deg 15 deg 20 deg 25 deg 30 deg 35 deg 40 deg 45 deg 50 deg

RMSE 0.04993 0.03380 0.04038 0.04504 0.04224 0.04564 0.03601 0.03911 0.05655 0.03961 0.04659

Quite accurate wind pressure coefficients prediction with all attack angles

Needs more accuracy for peak estimation to use in the wind load calculation – adjustment factor may need to be analyzed separately.

Wind Pressure Coefficients Prediction Using LSTM RNN



Determination of Basic Wind Speed 

Using Machine Learning Method



• According to the existing study, in Korea, the magnitude of wind load is higher than that of seismic load in case 

of RC buildings with more than 30 stories.

• Wind load is determined by wind speed at construction site, and wind speed is generally provided by design 

codes or standards.

Determination of Basic Wind Speed Using Machine Learning Method
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• KDS 41 10 15 and ASCE 7-22 present that the basic wind speed 

can be estimated based on observed wind speed data.

• However, the estimation of basic wind speed based on observed 

data requires several engineer’s judgement.

Observed regional climate data
(wind speed data)

3-sec or 10-min moving 
averaging to remove gust effect

Modification of wind speed for 
site conditions

Classification of roughness 
category of the site

Determination of topography 
condition

Determination of effective height

Engineers’ judgement

Calculation of annual maximum 
wind speed

Determination of basic wind 
speed with target return period

by extreme value statistics

Selection of neighboring 
observatory stations

Determination of Basic Wind Speed Using Machine Learning Method

 Selection of observatory stations

 Classification of roughness category

 Determination of topographic condition

 Determination of effective height

• In case of determination of ground roughness category, it 

may be inaccurate since it relies on the engineer’s judgment 

based on satellite image or field observation



• Depending on the wind direction, surface roughness category 

can be mixed and it is hard to make an unarguable decision.

• Since quantitative standard for surface roughness category 

does not exist, it is difficult to judge accurately.

Surface
Roughness Description

A Large city center with closely spaced tall buildings higher than 10-story

B
City with closely spaced residential houses with heights of 3.5 m or so or sc
attered medium-rise buildings

C
Open terrain with scattered obstructions with heights of 1.5∼10 m or so or
scattered low-rise buildings

D
Exposed open terrain with few obstructions or scattered obstructions less th
an 1.5 m in height or grassland, beach, airport etc.

Determination of Basic Wind Speed Using Machine Learning Method



• Machine learning has the advantage of being able to 

quantitatively determine high-dimensional data by 

decomposing high-dimensional data into low-dimensions.

• Deep learning as a method of machine learning, has 

advantages that it can handle high-dimension data, such 

as image.

• Since the topographical features expressed in satellite 

images are high-dimensional and abstract, they can be 

easily classified and quantitatively discriminated through 

machine learning.

Quantitative representation of satellite images 
in latent space

Determination of Basic Wind Speed Using Machine Learning Method



Terrain feature learning - Satellite image processing
RGB image

Semantic segmentation image (CART)

Semantic Hillshade image

Satellite image

• For learning of terrain feature using 
satellite image, 3-types of image 
processing was used. 

(RGB, CART and Hillshade function)

Determination of Basic Wind Speed Using Machine Learning Method



 VAE

Noise
(Information is not changed)

Determination of Basic Wind Speed Using Machine Learning Method

Terrain feature learning – Learning algorithm

Encoder Decoder

ℝଵଶ଼×ଵଶ଼×ଷ ℝଷଶ ℝଵଶ଼×ଵଶ଼×ଷ

 SimCLR

• The encoder decomposes the satellite image into 

latent vector, and the decoder reconstructs the 

vector into original satellite image.

• Through this, the encoder is trained to store 

representative information of satellite images in a 

latent space.Latent space

• Adding artificial noise to input satellite image 

and training the learning model

• The model is trained to store representative 

terrain information of image in latent space even 

if it has noise.



10-minute Moving Average Wind Speed Calculation

Calculation of Effective Height

Exposure Coefficient Estimation

Annual Maximum Wind Speed Estimation

Calculation of the 100-Year Return Period Wind Speed

Select-One
method

Each-One
method

K-NN
method

Observed Wind Speeds Data

Reflecting the effect of the terrain (Engineers’s jugement-based)

Calculating the wind speeds

Preprocess of the observed wind speeds

Determination of Basic Wind Speed Using Machine Learning Method

Approach 1 - Prediction of basic wind speed by machine learning

North-East

South-EastSouth-West
1 2 3 kd d d d   

: Target site : Neighboring stations

North-West

1d 3d
kd

1d

2d

NW1d NE1d

SE1d
SW1d

(a) Select-One method (b) K-NN method (c) Each-One method

 Select-one method :

Select one nearest observatory station

 K-NN method :

Select K number of nearest observatory station

 Each-one method:

Select one observatory station at each quarter Conventional method to estimate basic wind speed



Method
All data (318 stations) Except top 10 errors Except top 20 errors

Mean of errors 
(μerror), m/s

Standard deviation 
of error (σerror), m/s

Mean of errors 
(μerror), m/s

Mean of errors 
(μerror), m/s

Select-Randomly 5.364 4.350 - -

Select-One 4.252 3.405 3.928 3.669

K-NN (k = 5) 3.466 2.712 3.187 2.987

K-NN (k = 10) 3.368 2.660 3.087 2.900

K-NN (k = 15) 3.258 2.610 2.984 2.803

Each-One 3.556 2.773 3.271 3.072

Determination of Basic Wind Speed Using Machine Learning Method

Approach 1 - Prediction of basic wind speed by machine learning



Determination of Basic Wind Speed Using Machine Learning Method

Machine learning-based method to estimate basic wind speed

Approach 1 - Prediction of basic wind speed by machine learning

 K-NN method :

Select K number of nearest observatory stations.

⇒ Best result in baseline experiment

 K-NN method with similarity of terrain :

Select K number of observatory station having only 

similar terrain feature with target site.

 K-NN method with both distance & similarity :

Select K number of nearest observatory station 

having similar terrain feature with target site.

 MLP (Multi-Layer Perceptron) :

Flexible artificial neural network

⇒ Trained model judges all.



Method
All data (318 stations) Except top 10 errors Except top 20 errors

Mean of errors 
(μerror), m/s

Standard deviation 
of error (σerror), m/s

Mean of errors 
(μerror), m/s

Mean of errors 
(μerror), m/s

K-NN (k = 15)
(Based on distance only) 3.258 2.610 2.984 2.803

K-NN (k = 15) with machine learning
(based on terrain similarity) 3.194 2.657 2.923 2.734

K-NN (k = 15) with machine learning
(based on both distance 
and terrain similarity)

3.182 2.640 2.908 2.725

MLP
(Multi-Layer Perceptron) 2.917 2.300 2.697 2.539

Each-One 3.556 2.773 3.271 3.072

Determination of Basic Wind Speed Using Machine Learning Method

Approach 1 - Prediction of basic wind speed by machine learning

• Result using artificial neural network showed the best accuracy



• In Approach 1, prediction performance using neural 

networks (MLP) is higher than the performance of 

other methods.

• However, Approach 1 could only be deriving a single 

value of the basic wind speed.

• Approach 2 uses Graph Neural Network (GNN) to 

predict the annual maximum wind speed for multi-years 

based on terrain information from satellite images. 

• Results were compared with actual observed annual 

maximum wind speed data.

Determination of Basic Wind Speed Using Machine Learning Method

Approach 2 - Prediction of annual maximum wind speed using GNN method



• Tendency of prediction and observed data was quite similar, but the accuracy of the peak value was insufficient.

• Adjustment factor that addresses the difference between the measured and estimated peak values can be developed.

Determination of Basic Wind Speed Using Machine Learning Method

Approach 2 - Prediction of annual maximum wind speed using GNN method



- Terrain similarity can be considered through the terrain feature learned through machine learning.

- MLP model (deep learning), which predicts wind speed directly from the location information and terrain feature of the 

target site, showed the best accuracy.

- As a result of predicting the annual maximum wind speed using GNN (Approach 2), the tendency of prediction and 

observed data was quite similar, but the accuracy of the peak value was insufficient yet.

- The pattern of the predicted annual maximum wind speed was similar among the stations, but it was judged to be a 

characteristic of the wind load itself, not an overfitting problem.

- Additional research is needed on predictive models that can reflect wind direction and seasonal influences as well as 

terrain features.

Determination of Basic Wind Speed Using Machine Learning Method

Summary
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Gwang-ju Apartment Collapse (2022)

Sampoong Department Store Collapse (1995)Seongsu Bridge Collapse (1994)

Gyeongju Mauna Resort Collapse (2014)

Collapse Disaster



Data ProcessingImpact Echo System

Internal Defect O Internal Defect X

Impact Echo System



Why Edge Computing?  Cloud Becomes Crowded.



Edge Computing

IOT AI

Edge Computing MCU



Edge Computing

Catching right moment

CPU

MCU



MAX 9814 Microphone with AmplifierArduino Nano 33 IoT (MCU)

3D Printed Sound Cone Circuit & Manufacturing (Two Sensors)
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Data Reading / Recording with IDE

Smart NDT Using DL & Edge Computing



Confusion Matrix Results

Feature ExtractionLSTM RNN

BiLSTM Networks

Smart NDT Using DL & Edge Computing



- Non-destructive testing is a critical maintenance method for ensuring the safety of structures, but it takes a highly 

competent individual with a great deal of knowledge as well as a significant investment of money and time.

- Internet of Things (IoT) device that enables impact-echo measurement was developed.

- For the classification of impact-echo time series data, bi-directional long-short term memory neural network was used.

- A pre-trained AI model was embedded in the MCU to implement real-time classification-capable edge computing.

Summary

Smart NDT Using DL & Edge Computing


