Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

was
 
CONTENTS
Volume 11, Number 6, November 2008
 


Abstract
Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

Key Words
aerodynamics; building technology; database-assisted design; directionality; structural dynamics; tall buildings; time-domain methods; wind climatology; wind engineering; wind tunnels.

Address
Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Abstract
In this study, a partially earth-anchored cable system is studied in order to reduce the dynamic wind response of cable-stayed bridges. The employment of earth-anchored cables changes the dynamic characteristics of cable-stayed bridges under wind loads. In order to estimate the changes in the member forces, the spectral analysis for wind buffeting loads are performed and the peak responses are evaluated using 3-D finite element models of the three-span cable-stayed bridges with the partially earth-anchored cable system and with the self-anchored cable system, respectively. Comparing the results for the two different models, it is found that the earth-anchored cables affect longitudinal and vertical modes of the bridge. The changes of the natural frequencies for the longitudinal modes remarkably decrease the peak bending moment in the pylon and the movements at the expansion joints. The small changes of the natural frequencies for the vertical modes slightly increase bending moments and deflections in the girder. The original effects of the partially earth-anchored cable system are also shown under wind loads; the decrement of girder axial forces and bearing uplifting forces, and the increment of cable forces in the earth-anchored cables.

Key Words
partially earth-anchored cable system; wind response; cable-stayed bridge; dynamic characteristics; buffeting load.

Address
School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Korea

Abstract
The present study aims to estimate the wind ventilation performance for pedestrian level domains from the air quality point of view. Three typical models of a dense urban area were considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics, which in turn affect the air quality, within the pedestrian domain of a street canyon located within this area. The calculated flow fields were employed to estimate the exceedance probabilities within the study domain using a new approach: air exchange rate within the domain. The study has been applied to nine cities in Japan: Tokyo, Osaka, Sapporo, Niigata, Fukuoka, Nagoya, Sendai, Yokohama, and Kyoto, based on their mean wind velocity data. The results demonstrated that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool during the design stage of inhabited areas for the evaluation of pollutant-removal efficiency by the applied wind. Also, the calculated probabilities demonstrated substantial dependence on both the geometry of building arrays and the wind conditions of the nine cities.

Key Words
exceedance probability; air exchange rate; urban ventilation; wind environment; built-up area.

Address
Mahmoud Bady; Graduate School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
Shinsuke Kato, Yoshihiro Ishida, Hong Huang and Takeo Takahashi; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

Abstract
In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower\'s shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ?-? turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

Key Words
external surface wind ribs; natural draught cooling tower; finite element modeling; incompressible turbulent flow; wind pressure load.

Address
Civil Engineering Department, K.N.Toosi University of Technology, No.1346 Valiasr Street, 19697- Tehran, Iran

Abstract
In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

Key Words
high-rise buildings; wind-induced vibration; viscous damping optimum control; genetic algorithms; Rayleigh damping method.

Address
School of Civil Engineering, GuangZhou University, Guangdong 510006, P.R. China


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com