Abstract
Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.
Key Words
continuum model; finite element method, discrete element method; ballast; railway
Address
Chayut Ngamkhanong and Sakdirat Kaewunruen: Department of Civil Engineering, The University of Birmingham, U.K.;
Birmingham Centre for Railway Research and Education, The University of Birmingham, U.K.
Charalampos Baniotopoulos: Department of Civil Engineering, The University of Birmingham, U.K.
Abstract
In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.
Key Words
wind turbine tower; vibration-based damage alarming; harmonic force excitation; modal parameters; modal assurance criterion; frequency-response-ratio assurance criterion
Address
Cong-Uy Nguyen, Thanh-Canh Huynh, Ngoc-Loi Dang and Jeong-Tae Kim: Department of Ocean Engineering, Pukyong National University, 599-1 Daeyon-3dong, Nam-gu, Busan 608-737, Republic of Korea
Abstract
Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface\'s material.
Address
Joo-Young Ryu, Thanh-Canh Huynh and Jeong-Tae Kim: Department of Ocean Engineering, Pukyong National University, 599-1 Daeyon-3dong, Nam-gu, Busan 608-737, Republic of Korea
Abstract
Fibre reinforced polymers (FRP) are widely used to strengthen steel structures and retrofitting of existing structures due to its excellent properties. This paper reviews the use of carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) in strengthening steel and concrete structures. The paper discusses the use of FRP in strengthening of steel bridges, uses of FRP in repairing of corroded structures and the behaviour of different adhesives. The paper then deals with the FRP strengthened hollow sections and the different failure experienced. The paper then reviewed the current state of art used in strengthening tubular structures and focusing on FRP in strengthening of joints.
Key Words
steel structure; FRP, tubular joints; strengthening; repairing; retrofit
Address
P.S Prashob, A.P. Shashikala and T.P. Somasundaran: Department of Civil Engineering, National Institute of Technology Calicut, Kerala-673601, India
Abstract
This paper presents a Level III damage evaluation methodology, which simultaneously, identifies the location, the extent, and the severity of stiffness damage in deep beams. Deep beams are structural elements with relatively high aspect (depth-to-length) ratios whose response are no longer based on the simplified Euler-Bernoulli theory. The proposed methodology is developed on the bases of the force-displacement relations of the Timoshenko beam theory and the concept of invariant stress resultants, which states that the net internal force existing at any cross-section of the beam is not affected by the inflicted damage, provided that the external loadings in the undamaged and damaged beams are identical. Irrespective of the aspect ratios, local changes in both the flexural and the shear stiffnesses of beam-type structures may be detected using the approach presented in this paper.
Key Words
nondestructive damage evaluation; deep beams; Timoshenko beam theory; stress resultants; modal flexibility
Address
Selcuk Dincal: 2H Offshore Inc., 15990 North Barkers Landing, Suite 200, Houston, TX 77079, USA
Norris Stubbs: Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843, USA