Abstract
At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal nonuniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.
Key Words
drill string; bore-hole cavity; post-critical buckling; contact forces; invariant state
Address
V.I. Gulyayev, E.N. Andrusenko and N.V. Shlyun : Department of Mathematics, National Transport University, Suvorov Street, 1, Kiev, 01010, Ukraine
Abstract
The use of low-ductility welded wire fabric (WWF) as a main tensile reinforcement in concrete slabs compromises the ductility of concrete structures. Lower ductility in concrete structures can lead to brittle and catastrophic failure of the structures. This paper presents the experimental study carried out on eight simply supported one-way slabs to study the structural behavior of concrete slabs reinforced with lowductility WWF and steel fibers. The different types of steel fibers used were crimped fiber, hooked-end fiber and twincone fiber. The experimental results show that the ductility behavior of the slab specimens with low-ductility reinforcement was significantly improved with the inclusion of 40kg/m3 of twincone fiber.
Distribution of cracks was prominent in the slabs with twincone fiber, which also indicates the better distribution of internal forces in these slabs. However, the slab reinforced only with low-ductility reinforcement failed catastrophically with a single minor crack and without appreciable deflection.
Key Words
concrete; ductility; fiber reinforced concrete; welded wire fabric
Address
Rabin Tuladhar : School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4814, Australia
Benjamin J. Lancini : GHD, 42 Sturt Street, Townsville, QLD 4814, Australia
Abstract
In this paper, seismic performance of Kozyatagi Bridge is evaluated by employing nonlinear elasto-plastic dynamic analysis and the deformation-based performance. The time-history records of the 1999 Izmit, 1971 San Fernando and 1989 Loma Prieta earthquakes are modified by adopting a probability of exceedance of 2% in 50 years corresponding to the return period of 2475 years. The analysis is carried out for three different bearing cases which are movable bearings, restrained bearings, and movable bearings with viscous fluid dampers in the radial direction. The analysis results show that the bridge can be retrofitted with viscous fluid dampers. In this case the reinforced concrete piers need not be strengthened by any jacketing techniques in order to preserve the original architectural appearance of the bridge. The retrofitting design of the bridge with viscous fluid dampers is also presented in detail.
Abstract
In the present study a parametric analysis is conducted to study the effect of pile dimension and soil properties on the nonlinear dynamic response of pile subjected to lateral sinusoidal load at the pile head. The study is conducted on soil-pile model of different pile diameter, pile length and soil modulus, and results are compared to get the effect. The soil-pile system is modelled using Finite element method. The programming is done in MATLAB. Time history analysis of model is done for varying non-dimensional frequency of load and the results are compared to get the non-dimensional frequency at which pile head displacement is maximum in each case. Maximum possible bending moment and soil-pile interacting forces for the dynamic excitation of the pile is also compared. When results are compared with the linear response, it is observed that non-dimensional frequency is reduced in nonlinear response on account of reduction in the soil stiffness due to yielding. Nonlinear response curve shows high amplitude as compared to linear response curve.
Key Words
soil-pile interaction; consistent mass matrix; Rayleigh damping; dynamic lateral loading; Numerical modeling
Address
S. Mehndiratta, V.A. Sawant and N.K. Samadhiya : Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India
Abstract
During the past years, the protection of the environnement has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.
Key Words
wastes; valorization; granulates; marble; performance; substitution; mortar
Address
H. Hebhoub, M. Belachia and R. Djebien : Department of Civil Engineering, LMGHU Laboratory, University of Skikda, Algeria
Abstract
We apply the Finite Fracture Mechanics criterion to address the problem of a V-notched structure subjected to mode II loading, i.e., we provide a way to determine the direction and the load at which a crack propagates from the notch tip and express the critical conditions in terms of the generalized stress intensity factor. Weight functions for V-notch emanated cracks available in the literature allow us to implement the fracture criterion proposed in an almost completely analytical manner: the determination of the critical load and the direction of crack growth is reduced to a stationary point problem. A comparison with experimental data presented in the Literature concludes the paper.
Key Words
V-notches; Finite Fracture Mechanics; mode II
Address
Alberto Sapora, Pietro Cornetti and Alberto Carpinteri : Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Abstract
In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life,
such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.
Key Words
wireless; AODV; DSR; bridges; non-destructive testing; structural health monitoring
Address
Gokhan Kilic : Department of Civil Engineering, Izmir University of Economics, Sakarya Cad. No.156, Balcova, 35330, Izmir, Turkey
Abstract
Before incorporating the earthquake-resistance design in design standard (1988) in South Korea, most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity, such as exterior stair ways, exterior elevator room. For these reasons, the demands on retrofitting research for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. As the main purpose, this study was intended to examine the performance improvement in terms of ductility and strength in the wake of retrofitting and to suggest retrofitting details.
Address
Lan Chung, Tae Won Park : Department of Architectural Engineering, Dankook University, 126, Jukjeon-dong, Yongin-si, Gyeonggi-do, 448-701, Republic of Korea
Ji Hyun Hwang : Structural Engineering Research Division, Korea Institute of Construction Technology, 2311, Daewha-dong, Goyang-si, Gyeonggi-do, 411-712, Republic of Korea