Abstract
A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.
Key Words
uncertain structures; linear and nonlinear structures; moment equation approach; dynamic analysis.
Address
Dipartimento di Ingegneria Civile, University of Messina, Italy
Abstract
Seismic response of the liquid storage tanks isolated by the elastomeric bearings and sliding systems is investigated under near-fault earthquake motions. The fault normal and parallel components of near-fault motion are applied in two horizontal directions of the tank. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. It is observed that the resultant response of the isolated tank is mainly governed by fault normal component with minor contribution from the fault parallel component. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: aspect ratio of tank, the period of isolation and the damping of isolation bearings. There exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value under near-fault motion. The increase of damping beyond the optimum value will reduce the bearing and sloshing displacements but increases the base shear. A comparative performance of five isolation systems for liquid storage tanks is also studied under normal component of near-fault motion and found that the EDF type isolation system may be a better choice for design of isolated tank in near-fault locations. Finally, it is also observed that the satisfactory response can be obtained by analysing the base-isolated tanks under simple cycloidal pulse instead of complete acceleration history.
Key Words
base isolation; liquid storage tank; elastomeric bearings; sliding systems; near-fault motion; system parameters; cycloidal pulse.
Address
Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
Abstract
The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.
Key Words
communication towers; guyed; dynamics; seismic; finite-element; analysis.
Address
H. Meshmesha; Department of Civil and Environmental Engineering, University of Windsor, Ontario, Canada K. Sennah; Department of Civil Engineering, 350 Victoria st., Ryerson University, Toronto, Ontario, Canada J. B. Kennedy; Department of Civil and Environmental Engineering, University of Windsor, Ontario, Canada
Abstract
The fatigue cracks initiate and propagate in the Armored Vehicle Launch Bridge (AVLB) components, especially like the splice doubler angle, splice plate, and bottom chord, due to the cyclic loading by repeated AVLB-launchings and tank-crossings. In this study, laboratory fatigue tests were conducted on six aluminum 2014-T6, four aluminum 7050-T76511, and four ASTM A36 steel compact-tension specimens to evaluate the crack growth behavior of the materials used for the components. The experimental results provide the relationship (Paris Law) between crack growth rate, da/dn, and stress intensity range, K, whose material dependent constants C and m can later be used in the life estimation of the components. Finite Element Method (FEM) was used to obtain the stress intensity factor, K, of the components with cracks. Because of the complexity of loading conditions and component geometry, several assumptions and simplifications are made in the FEM modeling. The FEM results, along with the results obtained from laboratory fatigue tests, are then utilized to estimate critical crack length and remaining life of the components
Key Words
AVLB sub-components; fatigue crack growth; stress intensity factor; finite element method; remaining fatigue-life estimation
Address
Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV 26506, USA
Abstract
In structural analysis of tall buildings the traditional primary loading analysis approach that assumes all the loads are simultaneously applied to the fully built structure has been shown to be unsuitable by many researches. The construction sequential analysis that reflects the fact of the level-by-level construction of tall buildings can provide more reliable results and has been used more and more. However, too much computational cost has prevented the construction sequential analysis from its application in CAD/CAE software for building structures, since such an approach needs to deal with systematic changing of resultant stiffness matrices following level-by-level construction. This paper firstly analyzes the characteristics of assembling and triangular factorization of the stiffness matrix in the finite element model of the construction sequential analysis, then presents a fast construction sequential analysis strategy and a corresponding step-by-step active column solver by means of improving the existing skyline solver. The new strategy avoids considerably repeated calculation by only working on the latest appended and modified part of resultant stiffness matrices in each construction level. Without any simplification, the strategy guarantees accuracy while efficiency is greatly enhanced. The numerical tests show that the proposed strategy can be implemented with high efficiency in practical engineering design.
Key Words
high performance computing; FEA; construction sequential analysis; building structures; structural analysis.
Address
LTCS* & Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China
Abstract
This paper uses the finite element method to simultaneously consider the coupled cable-deck vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The stay cables are represented by some cable finite elements, which can consider the parametric vibration of the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh damping considering element damping for damping matrix are also proposed for dynamic analyses of cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively.
Key Words
stay cable; parametric vibrations; finite element method; cable-stayed bridge.
Address
College of Civil Engineering and Architecture, Fuzhou University, 523 Gongye Road, Fuzhou, Fujian, China
Abstract
This paper presents the results of an experimental investigation on the behaviour of 56 reinforced concrete beams subjected to pure torsion. The reported results include the behaviour curves, the failure modes and the values of the pre-cracking torsional stiffness, the cracking and ultimate torsional moments and the corresponding twists. The influence of the volume of stirrups, the height to width ratios and the arrangement of longitudinal bars on the torsional behaviour is discussed. In order to describe the entire torsional behaviour of the tested beams, the combination of two different analytical models is used. The prediction of the elastic till the first cracking part is achieved using a smeared crack analysis for plain concrete in torsion, whereas for the description of the post-cracking response the softened truss model is used. A simple modification to the softened truss model to include the effect of confinement is also attempted. Calculated torsional behaviour of the tested beams and 21 beams available in the literature are compared with the experimental ones and a very good agreement is observed.